When more than one person works on a software project
things often get complicated. Often, two people try to
edit the same file simultaneously. One solution, known
as file locking or reserved checkouts, is
to allow only one person to edit each file at a time.
This is the only solution with some version control
systems, including RCS and SCCS. Currently
the usual way to get reserved checkouts with CVS
is the cvs admin -l
command (see section admin options). This is not as nicely integrated into
CVS as the watch features, described below, but it
seems that most people with a need for reserved
checkouts find it adequate.
It also may be possible to use the watches
features described below, together with suitable
procedures (not enforced by software), to avoid having
two people edit at the same time.
The default model with CVS is known as unreserved checkouts. In this model, developers can edit their own working copy of a file simultaneously. The first person that commits his changes has no automatic way of knowing that another has started to edit it. Others will get an error message when they try to commit the file. They must then use CVS commands to bring their working copy up to date with the repository revision. This process is almost automatic.
CVS also supports mechanisms which facilitate various kinds of communication, without actually enforcing rules like reserved checkouts do.
The rest of this chapter describes how these various models work, and some of the issues involved in choosing between them.
Based on what operations you have performed on a
checked out file, and what operations others have
performed to that file in the repository, one can
classify a file in a number of states. The states, as
reported by the status
command, are:
add
, and not yet
committed your changes.
remove
, and not yet
committed your changes.
update
rather than
checkout
to get that newer revision.
update
command gave a conflict. If you have not
already done so, you need to
resolve the conflict as described in section Conflicts example.
add
.
To help clarify the file status, status
also
reports the Working revision
which is the
revision that the file in the working directory derives
from, and the Repository revision
which is the
latest revision in the repository for the branch in
use.
The options to status
are listed in
section Quick reference to CVS commands. For information on its Sticky tag
and Sticky date
output, see section Sticky tags.
For information on its Sticky options
output,
see the `-k' option in section update options.
You can think of the status
and update
commands as somewhat complementary. You use
update
to bring your files up to date, and you
can use status
to give you some idea of what an
update
would do (of course, the state of the
repository might change before you actually run
update
). In fact, if you want a command to
display file status in a more brief format than is
displayed by the status
command, you can invoke
$ cvs -n -q update
The `-n' option means to not actually do the
update, but merely to display statuses; the `-q'
option avoids printing the name of each directory. For
more information on the update
command, and
these options, see section Quick reference to CVS commands.
When you want to update or merge a file, use the update
command. For files that are not up to date this is roughly equivalent
to a checkout
command: the newest revision of the file is
extracted from the repository and put in your working directory.
Your modifications to a file are never lost when you
use update
. If no newer revision exists,
running update
has no effect. If you have
edited the file, and a newer revision is available,
CVS will merge all changes into your working copy.
For instance, imagine that you checked out revision 1.4 and started
editing it. In the meantime someone else committed revision 1.5, and
shortly after that revision 1.6. If you run update
on the file
now, CVS will incorporate all changes between revision 1.4 and 1.6 into
your file.
If any of the changes between 1.4 and 1.6 were made too
close to any of the changes you have made, an
overlap occurs. In such cases a warning is
printed, and the resulting file includes both
versions of the lines that overlap, delimited by
special markers.
See section update--Bring work tree in sync with repository, for a complete description of the
update
command.
Suppose revision 1.4 of `driver.c' contains this:
#include <stdio.h> void main() { parse(); if (nerr == 0) gencode(); else fprintf(stderr, "No code generated.\n"); exit(nerr == 0 ? 0 : 1); }
Revision 1.6 of `driver.c' contains this:
#include <stdio.h> int main(int argc, char **argv) { parse(); if (argc != 1) { fprintf(stderr, "tc: No args expected.\n"); exit(1); } if (nerr == 0) gencode(); else fprintf(stderr, "No code generated.\n"); exit(!!nerr); }
Your working copy of `driver.c', based on revision 1.4, contains this before you run `cvs update':
#include <stdlib.h> #include <stdio.h> void main() { init_scanner(); parse(); if (nerr == 0) gencode(); else fprintf(stderr, "No code generated.\n"); exit(nerr == 0 ? EXIT_SUCCESS : EXIT_FAILURE); }
You run `cvs update':
$ cvs update driver.c RCS file: /usr/local/cvsroot/yoyodyne/tc/driver.c,v retrieving revision 1.4 retrieving revision 1.6 Merging differences between 1.4 and 1.6 into driver.c rcsmerge warning: overlaps during merge cvs update: conflicts found in driver.c C driver.c
CVS tells you that there were some conflicts. Your original working file is saved unmodified in `.#driver.c.1.4'. The new version of `driver.c' contains this:
#include <stdlib.h> #include <stdio.h> int main(int argc, char **argv) { init_scanner(); parse(); if (argc != 1) { fprintf(stderr, "tc: No args expected.\n"); exit(1); } if (nerr == 0) gencode(); else fprintf(stderr, "No code generated.\n"); <<<<<<< driver.c exit(nerr == 0 ? EXIT_SUCCESS : EXIT_FAILURE); ======= exit(!!nerr); >>>>>>> 1.6 }
Note how all non-overlapping modifications are incorporated in your working copy, and that the overlapping section is clearly marked with `<<<<<<<', `=======' and `>>>>>>>'.
You resolve the conflict by editing the file, removing the markers and the erroneous line. Suppose you end up with this file:
#include <stdlib.h> #include <stdio.h> int main(int argc, char **argv) { init_scanner(); parse(); if (argc != 1) { fprintf(stderr, "tc: No args expected.\n"); exit(1); } if (nerr == 0) gencode(); else fprintf(stderr, "No code generated.\n"); exit(nerr == 0 ? EXIT_SUCCESS : EXIT_FAILURE); }
You can now go ahead and commit this as revision 1.7.
$ cvs commit -m "Initialize scanner. Use symbolic exit values." driver.c Checking in driver.c; /usr/local/cvsroot/yoyodyne/tc/driver.c,v <-- driver.c new revision: 1.7; previous revision: 1.6 done
For your protection, CVS will refuse to check in a file if a conflict occurred and you have not resolved the conflict. Currently to resolve a conflict, you must change the timestamp on the file. In previous versions of CVS, you also needed to insure that the file contains no conflict markers. Because your file may legitimately contain conflict markers (that is, occurrences of `>>>>>>> ' at the start of a line that don't mark a conflict), the current version of CVS will print a warning and proceed to check in the file.
If you use release 1.04 or later of pcl-cvs (a GNU Emacs front-end for CVS) you can use an Emacs package called emerge to help you resolve conflicts. See the documentation for pcl-cvs.
It is often useful to inform others when you commit a new revision of a file. The `-i' option of the `modules' file, or the `loginfo' file, can be used to automate this process. See section The modules file. See section Loginfo. You can use these features of CVS to, for instance, instruct CVS to mail a message to all developers, or post a message to a local newsgroup.
If several developers try to run CVS at the same time, one may get the following message:
[11:43:23] waiting for bach's lock in /usr/local/cvsroot/foo
CVS will try again every 30 seconds, and either continue with the operation or print the message again, if it still needs to wait. If a lock seems to stick around for an undue amount of time, find the person holding the lock and ask them about the cvs command they are running. If they aren't running a cvs command, look in the repository directory mentioned in the message and remove files which they own whose names start with `#cvs.rfl', `#cvs.wfl', or `#cvs.lock'.
Note that these locks are to protect CVS's internal data structures and have no relationship to the word lock in the sense used by RCS---which refers to reserved checkouts (see section Multiple developers).
Any number of people can be reading from a given repository at a time; only when someone is writing do the locks prevent other people from reading or writing.
One might hope for the following property
If someone commits some changes in one cvs command, then an update by someone else will either get all the changes, or none of them.
but CVS does not have this property. For example, given the files
a/one.c a/two.c b/three.c b/four.c
if someone runs
cvs ci a/two.c b/three.c
and someone else runs cvs update
at the same
time, the person running update
might get only
the change to `b/three.c' and not the change to
`a/two.c'.
For many groups, use of CVS in its default mode is perfectly satisfactory. Users may sometimes go to check in a modification only to find that another modification has intervened, but they deal with it and proceed with their check in. Other groups prefer to be able to know who is editing what files, so that if two people try to edit the same file they can choose to talk about who is doing what when rather than be surprised at check in time. The features in this section allow such coordination, while retaining the ability of two developers to edit the same file at the same time.
For maximum benefit developers should use cvs
edit
(not chmod
) to make files read-write to
edit them, and cvs release
(not rm
) to
discard a working directory which is no longer in use,
but CVS is not able to enforce this behavior.
To enable the watch features, you first specify that certain files are to be watched.
-lR
] files ...
Specify that developers should run cvs edit
before editing files. CVS will create working
copies of files read-only, to remind developers
to run the cvs edit
command before working on
them.
If files includes the name of a directory, CVS
arranges to watch all files added to the corresponding
repository directory, and sets a default for files
added in the future; this allows the user to set
notification policies on a per-directory basis. The
contents of the directory are processed recursively,
unless the -l
option is given.
The -R
option can be used to force recursion if the -l
option is set in `~/.cvsrc' (see section Default options and the ~/.cvsrc file).
If files is omitted, it defaults to the current directory.
-lR
] files ...
Do not create files read-only on checkout; thus,
developers will not be reminded to use cvs edit
and cvs unedit
. CVS will check out files
read-write as usual, unless other permissions override
due to the PreservePermissions
option being
enabled in the `config' administrative file
(see section Special Files, see section The CVSROOT/config configuration file)
The files and options are processed as for cvs
watch on
.
You can tell CVS that you want to receive
notifications about various actions taken on a file.
You can do this without using cvs watch on
for
the file, but generally you will want to use cvs
watch on
, so that developers use the cvs edit
command.
-a
action] [-lR
] files ...
Add the current user to the list of people to receive notification of work done on files.
The -a
option specifies what kinds of events CVS should notify
the user about. action is one of the following:
edit
cvs edit
command (described
below) to a file.
unedit
cvs unedit
command (described
below) or the cvs release
command to a file, or has deleted
the file and allowed cvs update
to recreate it.
commit
all
none
cvs edit
,
described below.)
The -a
option may appear more than once, or not at all. If
omitted, the action defaults to all
.
The files and options are processed as for the
cvs watch
commands.
-a
action] [-lR
] files ...
Remove a notification request established using cvs watch add
;
the arguments are the same. If the -a
option is present, only
watches for the specified actions are removed.
When the conditions exist for notification, CVS
calls the `notify' administrative file. Edit
`notify' as one edits the other administrative
files (see section The administrative files). This
file follows the usual conventions for administrative
files (see section The common syntax), where each line is a regular
expression followed by a command to execute. The
command should contain a single occurrence of `%s'
which will be replaced by the user to notify; the rest
of the information regarding the notification will be
supplied to the command on standard input. The
standard thing to put in the notify
file is the
single line:
ALL mail %s -s \"CVS notification\"
This causes users to be notified by electronic mail.
Note that if you set this up in the straightforward way, users receive notifications on the server machine. One could of course write a `notify' script which directed notifications elsewhere, but to make this easy, CVS allows you to associate a notification address for each user. To do so create a file `users' in `CVSROOT' with a line for each user in the format user:value. Then instead of passing the name of the user to be notified to `notify', CVS will pass the value (normally an email address on some other machine).
CVS does not notify you for your own changes. Currently this check is done based on whether the user name of the person taking the action which triggers notification matches the user name of the person getting notification. In fact, in general, the watches features only track one edit by each user. It probably would be more useful if watches tracked each working directory separately, so this behavior might be worth changing.
Since a file which is being watched is checked out
read-only, you cannot simply edit it. To make it
read-write, and inform others that you are planning to
edit it, use the cvs edit
command. Some systems
call this a checkout, but CVS uses that term
for obtaining a copy of the sources (see section Getting the source), an operation which those systems call a
get or a fetch.
Prepare to edit the working files files. CVS makes the
files read-write, and notifies users who have requested
edit
notification for any of files.
The cvs edit
command accepts the same options as the
cvs watch add
command, and establishes a temporary watch for the
user on files; CVS will remove the watch when files are
unedit
ed or commit
ted. If the user does not wish to
receive notifications, she should specify -a none
.
The files and options are processed as for the cvs
watch
commands.
Caution: If the PreservePermissions
option is enabled in the repository (see section The CVSROOT/config configuration file),
CVS will not change the permissions on any of the
files. The reason for this change is to ensure
that using `cvs edit' does not interfere with the
ability to store file permissions in the CVS
repository.
Normally when you are done with a set of changes, you
use the cvs commit
command, which checks in your
changes and returns the watched files to their usual
read-only state. But if you instead decide to abandon
your changes, or not to make any changes, you can use
the cvs unedit
command.
-lR
] files ...
Abandon work on the working files files, and revert them to the
repository versions on which they are based. CVS makes those
files read-only for which users have requested notification using
cvs watch on
. CVS notifies users who have requested unedit
notification for any of files.
The files and options are processed as for the
cvs watch
commands.
If watches are not in use, the unedit
command
probably does not work, and the way to revert to the
repository version is to remove the file and then use
cvs update
to get a new copy. The meaning is
not precisely the same; removing and updating may also
bring in some changes which have been made in the
repository since the last time you updated.
When using client/server CVS, you can use the
cvs edit
and cvs unedit
commands even if
CVS is unable to successfully communicate with the
server; the notifications will be sent upon the next
successful CVS command.
-lR
] files ...
List the users currently watching changes to files. The report includes the files being watched, and the mail address of each watcher.
The files and options are processed as for the
cvs watch
commands.
-lR
] files ...
List the users currently working on files. The report includes the mail address of each user, the time when the user began working with the file, and the host and path of the working directory containing the file.
The files and options are processed as for the
cvs watch
commands.
If you use the watch features on a repository, it creates `CVS' directories in the repository and stores the information about watches in that directory. If you attempt to use CVS 1.6 or earlier with the repository, you get an error message such as the following (all on one line):
cvs update: cannot open CVS/Entries for reading: No such file or directory
and your operation will likely be aborted. To use the
watch features, you must upgrade all copies of CVS
which use that repository in local or server mode. If
you cannot upgrade, use the watch off
and
watch remove
commands to remove all watches, and
that will restore the repository to a state which
CVS 1.6 can cope with.
Reserved and unreserved checkouts each have pros and cons. Let it be said that a lot of this is a matter of opinion or what works given different groups' working styles, but here is a brief description of some of the issues. There are many ways to organize a team of developers. CVS does not try to enforce a certain organization. It is a tool that can be used in several ways.
Reserved checkouts can be very counter-productive. If two persons want to edit different parts of a file, there may be no reason to prevent either of them from doing so. Also, it is common for someone to take out a lock on a file, because they are planning to edit it, but then forget to release the lock.
People, especially people who are familiar with reserved checkouts, often wonder how often conflicts occur if unreserved checkouts are used, and how difficult they are to resolve. The experience with many groups is that they occur rarely and usually are relatively straightforward to resolve.
The rarity of serious conflicts may be surprising, until one realizes that they occur only when two developers disagree on the proper design for a given section of code; such a disagreement suggests that the team has not been communicating properly in the first place. In order to collaborate under any source management regimen, developers must agree on the general design of the system; given this agreement, overlapping changes are usually straightforward to merge.
In some cases unreserved checkouts are clearly inappropriate. If no merge tool exists for the kind of file you are managing (for example word processor files or files edited by Computer Aided Design programs), and it is not desirable to change to a program which uses a mergeable data format, then resolving conflicts is going to be unpleasant enough that you generally will be better off to simply avoid the conflicts instead, by using reserved checkouts.
The watches features described above in section Mechanisms to track who is editing files can be considered to be an intermediate model between reserved checkouts and unreserved checkouts. When you go to edit a file, it is possible to find out who else is editing it. And rather than having the system simply forbid both people editing the file, it can tell you what the situation is and let you figure out whether it is a problem in that particular case or not. Therefore, for some groups it can be considered the best of both the reserved checkout and unreserved checkout worlds.
Go to the first, previous, next, last section, table of contents.